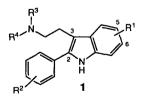


PII: S0040-4039(97)00797-1


Synthesis of 2-Aryltryptamines with Palladium Catalyzed Cross-Coupling of 2-Bromotryptamines and Arylboronic Acids

Lin Chu*, Michael H. Fisher, Mark T. Goulet, and Matthew J. Wyvratt

Department of Medicinal Chemistry, Merck Research Laboratories P.O. Box 2000, Rahway, New Jersey 07065 USA

Abstract: A versatile and high-yielding synthesis of 2-aryltryptamines employing palladium(0) catalyzed cross-coupling of 2-bromotryptamines and arylboronic acids was developed. The preparation of the intermediate 2-bromotryptamines with pyridine hydrobromide perbromide as the brominating agent, is also reported. © 1997 Elsevier Science Ltd.

The 2-aryltryptamine (1) moiety is present in many natural products and medicinal chemistry targets with various biological activities. Our interest in this class of compounds led to investigations directed toward a versatile synthetic process to introduce a wide range of aryl substituents to the 2-position of the indole, potentially via a transition metal mediated aryl-indole cross-coupling. There have been limited examples of indole couplings at the 2-position reported to date. Several of them involved initial lithiation at the 2-position and hence required blocking of the indole nitrogen. ^{1a-d} In addition, the organolithium intermediates generated in these reactions are incompatible with many functional groups. Others utilized Stille² coupling conditions that would produce stoichiometric quantities of tin-containing by-products, a major drawback for industrial scale work. ^{3a-c} We wish to describe here a high-yielding protocol which doesn't require protection on the indole nitrogen, and which employs a modification of the Suzuki reaction with bromotryptamine **6** as the key intermediate (Scheme I). To our knowledge, this is the first reported approach to 2-aryltryptamines that features coupling of unprotected 2-haloindoles with arylboronic acids.⁴

Several commercially available tryptamines (from Aldrich or Sigma) have been used to demonstrate the scope of our methodology. Protection of the amino group with N-carbethoxyphthalimide(3)^{5a-c} in refluxing THF for 1 - 2 days afforded pure phthalimide 4 in high yield after trituration with hexane / CH₂Cl₂ (3 : 1). The phthalimide 4 was selectively brominated at the 2-position with pyridine hydrobromide perbromide 5 ^{6a,b} to form the key intermediate 6. Among several modifications of the Suzuki reaction⁷ that we have tried, the combination of Na₂CO₃, LiCl, and Pd(PPh₃)₄ in refluxing toluene / EtOH most effectively cross-coupled 6 with a wide variety of arylboronic acids 7 in moderate to high yields.⁸ Table 1 shows the tryptamines that have been used and the respective yields of the cross-couplings with different arylboronic acids, available commercially or prepared from the corresponding aryl bromides.^{9a,b} The reaction proceeded smoothly with arylboronic acids containing electron-donating or electron-withdrawing substituents (8a - 8d). In addition, the reaction tolerated a single *ortho*-substituent (8i), although a significantly lower yield was obtained when both *ortho*-positions were occupied (8k).

Scheme I

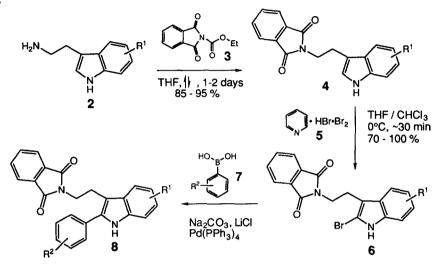


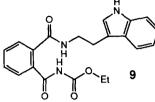
Table 1

6 , R ¹ =	7 , R^2 -Ph =	8, isolated yield	6 , R^{1} =	7 , R^2 -Ph =	8, isolated yield
Н	3,5-bis-CF3-phenyl	8a , 88 %	н	3-nitrophenyl	8m , 67 %
н	3,5-dichlorophenyl	8b, 70 %	н	3-methylphenyl	8n , 89 %
Н	3,5-dimethylphenyl	8c , 85 %	н	3-methoxyphenyl	80, 60 %
н	3,5-dimethoxyphenyl	8d, 86 %	Н	4-fluorophenyl	8p , 86 %
н	1-naphthyl	8e , 91 %	н	4-methylphenyl	8q , 74 %
н	2-naphthyl	8f , 80 %	н	4-chlorophenyl	8r , 79 %
	-r		н	phenyl	8 s, 79 %
(H	\square	8g, 74 %	5-OBn	1-naphthyl	8t, 80 %
	N Y		5-OBn	3,5-dimethylphenyl	8u , 83 %
н	Me CCN	8h , 86 %	5-OMe	3,5-dimethylphenyl	8v , 89 %
н	2-methylphenyl	8i , 74 %	5-Cl	3,5-dimethylphenyl	8w, 59%
н	2,4-dichlorophenyl	8j , 70 %	5-Me	3,5-dimethylphenyl	8x, 77 %
н	2,6-dimethylphenyl	8k, 12 %	6-F	1-naphthyl	8 y, 84 %
н	3-Cl-4-F-phenyl	81 , 70 %	7-Me	3,5-dimethylphenyl	8z, 70 %
			L		

Although the function of the added lithium chloride has not been extensively investigated, we did notice a consistent decrease in yield when lithium chloride was absent (Table 2). It is possible that LiCl accelerated the rate of the desired reaction and/or decreased the rate of side reactions. Stille¹⁰ has noted that in the Pd-catalyzed coupling of vinyl triflates with organostannanes, LiCl accelerated product formation to a greater extent than did LiBr. In each case, the halides facilitated the formation of the initial palladium-olefin σ -complex by displacing the triflate ligand. Product formation from this complex may be more productive with chloride than bromide because with the latter ligand, a significant degree of catalyst decomposition was observed. In the present case, facile exchange of added chloride with the bromide ligand may produce a relatively more stable catalytic species, maximizing product formation.¹¹

Table 2

6 , R ¹ =	$7, R^2 - Ph =$	LiCl, equiv.	Rxn Time	8, isolated yield
Н	3,5-dimethylphenyl	3.0	4 hr	85 %
Н	"	0	4 hr	50 %
н	3-nitrophenyl	3.0	2.5 hr	67 %
Н	n	0	2.5 hr	42 %
н	2,4-dichlorophenyl	3.0	5 hr	70 %
Н	**	0	5 hr	7 %


In conclusion, we have demonstrated a versatile methodology for the preparation of a wide selection of 2-aryltryptamines applying a modification of the Suzuki reaction on various boronic acids with an unprotected indole.

Acknowledgement: We wish to thank Dr. Lawrence Colwell and Ms. Amy Bernick for providing mass spectrometry services and Dr. Derek Von Langen for valuable discussions on the Suzuki reaction.

References and Notes:

- a) Palmisano, G.; Santagostino, M. Tetrahedron 1993, 49, 2533. b) Minato, A.; Tamao, K.; Hayashi, T.; Suzuki, K.; Kumada, M. Tetrahedron Lett. 1981, 22, 5319. c) Widdowson, D. A.; Zhang, Y. Z. Tetrahedron 1986, 42, 2111. d) Ishikura, M.; Terashima, M. J. Chem. Soc. Chem. Comm. 1989, 135.
- 2. Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508.
- a) Palmisano, G.; Santagostino, M. Synlett 1993, 771. b) Somei, M.; Sayama, S.; Naka, K.; Yamada, F. Heterocycles 1988, 27, 1585. c) Hudkins, R. L.; Diebold, J. L.; Marsh, F. D. J. Org. Chem. 1995, 60, 6218.
- 4. There has been one recent account on syntheses of 6- and 7-arylindole via Pd-catalyzed coupling of unprotected 6- and 7-bromoindole: Carrera, G. M.; Sheppard, G. S. *Synlett* **1994**, 93.

5. a) McArthur, C.; Worster, P.; Jiang, J-L.; Leznoff, C. Can. J. Chem. 1982, 60, 1836. However, it is worth noting that when the conditions reported in the aforementioned reference were employed on our substrate 2 (R¹ = H), only the intermediate 9 was formed. Prolonged heating for 1 - 2 days was essential in order to drive the reaction to completion.

b) One equivalent of triethylamine was added in the reaction when a hydrochloride salt of the starting tryptamine(2) was used. c) When a Boc group was used to protect the tryptamine, a complex mixture resulted in the subsequent bromination step, possibly due to bromination on the carbamate NH, which then led to undesired side products.

- a) Grieco, P.; Hon, Y. S.; Perez-Medrano, A. J. Am. Chem. Soc. 1988, 110, 1630. b) When there was a strong electron-donating substituent present on the indole (eg. 5-OBn, 5-OMe), undesired bromination on the 6-position of the indole was observed as a competing side-reaction.
- 7. Miyaura, N.; Suginome, H.; Suzuki, A. Synth. Commun. 1981 11, 513
- 8. In a typical experiment, the bromide 6 (0.67 mmol, 1 equiv.) and boronic acid 7 (1.0 mmol, 1.5 equiv.) were dissolved in 8 mL of toluene and 8 mL of absolute ethanol. Na₂CO₃ (1.0 M solution in H₂O, 2.5 equiv.), LiCl (anhydrous, 3 equiv.), and tetrakis(triphenylphosphine) palladium (purchased from Aldrich, 5 mol %) were added sequentially. The resulting heterogeneous system was then brought up to refluxing condition for 3 5 hours under a nitrogen atmosphere. The end point of the reaction was usually accompanied by a change in color of the reaction mixture from yellow to dark orange/brown. When the completion of reaction was confirmed by TLC, the reaction mixture was concentrated directly *in vacuo* and azeotroped 2 3 times with toluene. The organics were dissolved in a mixture of hexane/methylene chloride/ethyl acetate, and flash chromatographed on silica with appropriate mixtures of hexane/ethyl acetate.
- a) Gronowitz, S.; Hörnfeldt, A. B.; Yang, Y. H. Chem. Scr. 1986, 26, 311. b) Thompson, W. J.; Gaudino, J. J. Org. Chem. 1984, 49, 5237.
- 10. Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033.
- For mechanistic studies on Pd-catalyzed cross-couplings, see Ref. 2 and a) Gillie, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102, 4933. b) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972. c) Martin, A. R.; Yang, Y. Acta Chem. Scand. 1993, 47, 221. d) Smith, G.; Dezeny, G.; Hughes, D.; King, A.; Verhoeven, T. J. Org. Chem. 1994, 59, 8151 and references cited therein.

(Received in USA 18 March 1997; revised 21 April 1997; accepted 22 April 1997)